A "CS 1.5" Introduction to Web Programming

Marty Stepp
Computer Science & Engineering
University of Washington
Seattle, WA

stepp@cs.washington.edu

ABSTRACT

Web programming is increasing rapidly in importarete the
university level, yet there is no consensus abdgnwand how it
should be incorporated into the computer scienagicclum.
This paper describes our results in teaching arerargntal
introductory web programming course at the Univgrsof
Washington that has had great success in attraetigg numbers
of students from inside and outside the computeEmse major.
The course requires CS1 as a prerequisite, strikiggod balance
between making the course open to non-majors kaat alore
rigorous for students with programming backgrouNde classify
the course as "CS 1.5" because many of our studekés it
between CS1 and CS2. We use our evaluation dat@te that a
web programming course at this level leads to atgdeal of
student interest and enthusiasm, broadens the afacbmputer
science, and provides a valuable service to otbeardments.

Categories and Subject Descriptors

D.1.0 [Programming Techniques]: General-Weh

H.5.3 [Information Interfaces and Presentation]: Group and
Organization Interfaces --- Web-based interaction.

K.3.2 [Computers and Education]: Computer and Information
Science Education‘Gomputer Science Education

General Terms
Human Factors, Languages, Measurement, Standaodizat

Keywords

Pedagogy, Computer Science Education, Web Prognagymi
CS1.5, HTTP, HTML, XHTML, CSS, PHP, JavaScript, XML
Ajax, SQL, databases, web security.

1. INTRODUCTION

More and more of the world's software is being within a
web browser. Web software offers many legitimatediits: ease
of deployment, ubiquity of access to a global ancée and
availability of server-side data and services. d&l@cently, more

Permission to make digital or hard copies of alpart of this work for
personal or classroom use is granted without feeiged that copies are
not made or distributed for profit or commerciavadtage and that copies
bear this notice and the full citation on the fipsige. To copy otherwise,
or republish, to post on servers or to redistribiatdists, requires prior
specific permission and/or a fee.

SIGCSE'09March 3-7, 2009, Chattanooga, Tennessee, USA.
Copyright 2009 ACM 978-1-60558-183-5/09/03...$5.00

Jessica Miller
Computer Science & Engineering
University of Washington
Seattle, WA

jessica@cs.washington.edu

Victoria Kirst
Computer Science & Engineering
University of Washington
Seattle, WA

vkirst@cs.washington.edu

mature web standards and technologies such ash§ex taken
the web beyond simple document processing to them"Web
2.0." With these advances the relevance of tegchireb
programming at the college level has also increased

But web programming's role in the computer science

curriculum has not yet been clearly defined. Mamwersities
teach web programming only as part of informatiariersce
degrees or other programs separate from computicec This
may reflect the fact that some consider web program a lesser
art form, not worthy of inclusion in a comp-sci deg program.
Nonetheless many CS departments possess the ghiroto
teaching web programming yet offering senior-leselrses that
require students to complete web projects, suchsafsvare
engineering, databases, HCI, and capstone prajecses.

Things are slowly changing, as more computer seienc

programs now offer rigorous web programming clasds there
does not seem to be a consensus about where tutheulum,

and at what level of detail, to introduce this male Some offer
it primarily to non-majors in CSO0 at a low leveladpth, focusing
on HTML and JavaScript [5]. Others offer juniomdasenior-
level capstone or web project courses [10], oftéh multi-week
assignments done in larger groups. The coursgswilely in

the particular languages and technologies taugatticplarly

server-side web languages such as PHP and Rubwgits R

The authors led a SIGCSE 2008 Birds of a Feathesiae
[9] in which we conversed with and informally suyee
instructors about their web courses. As showrhin following
chart, essentially all attendees teach a courgectheers HTML,
Cascading Style Sheets (CSS), JavaScript for elielet
interaction, and a server-side language. PHP meambst widely
taught server language, followed by Java/JSP soistand then
others such as Ruby, Perl, and Microsoft's .NETremaork.

Table 1. SIGCSE 2008 BoF Web L anguage Survey Data

Language Count
PHP 9
Java/JSP 7
Perl/CGI 4
Ruby on Rails 3
Microsoft .NET 2
Python/other 2

The BoF attendees reported that some of the vamiati web
programming courses is because many departmentstdievote
significant resources to teaching it, leaving thaerknvto a single
devoted faculty member. Others pointed out thatrttedern CS

curriculum is already hefty and that it is difficub add another
course to it without drawing ire from students &aclilty alike.

In this paper we discuss our own results at thevéisity of
Washington with adding an introductory web prograngn
course to our Computer Science & Engineering culuin.
During these course offerings we gathered extersiveey data
from the students for assessment purposes. We préient
survey data supporting our hypothesis that offeengeb course
early in the curriculum, particularly just after CSproves to be
beneficial and enjoyable for students. Additiopalte will argue
that offering a web course at this level also paesi a valuable
service to non-majors and other departments andeases
enrollment in later courses in the computer scienraculum.

2. RELATED WORK

Other universities offer similar web programmingurzes
and have published findings. Yue and Ding of HonsElear
Lake [10], Noonan of William and Mary [4] and Jaoks of
Duquesne University [3] are among several who odfesenior-
level course in web application development, sung\client-
and server-side technologies along the way. Degadinly with
CS majors at the senior level affords them the dppdy to
cover technologies at a deeper level in a shoneuat of time.

Dave Reed of Creighton University [5] published véssion
of a non-majors CSO focusing on basic JavaScripgramming.
This approach has been discussed by Zimmermarafid pthers.
This model has become arguably the canonical C8fseand is
successful at many institutions. A fundamentafedéince from
our own work is that their material is presentec dghter level
with no programming prerequisite, and that the seus largely
confined to client-side programming in JavaScriptthaut
exploring other technologies. Many universitiefeptourses in
web page design using HTML but do not focus on pgning
or interactive sites (many are offered by departmentside CS)
and are therefore excluded from the discussion.

Michael Gousie of Wheaton College [2] offers onetloé
more similar courses to our own, targeting non-msajo The
Wheaton course focuses on web graphics using Jglata and
the AWT framework, rather than rich internet apaflion
development. Our investigations have not led uhéodiscovery
of other published web programming courses targetihis
specific audience at this level in the undergragleatriculum.

3. OUR WEB PROGRAMMING COURSE

In September 2006, a group of educators was flown t

Google for a meeting to discuss web programmingtha

undergraduate curriculum. Mark Lucovsky, a semiogineering
manager at Google, gave a presentation encouragincators to
teach introductory web programming. Google reptortd W and
other institutions that students are under-preptredork on web
software development as they complete their unddrgite
studies. This is consistent with other feedback a@epartment
receives at its yearly industry affiliates’ meesingwhere
companies ask for students more familiar with wetigmamming.
To this end, Google funded a proposal from UW tierod web
programming course once per year in 2007 and 2008.

Google's original desire was for us to convert dava CS1
course into a web programming course, but we idstémse the

lower-risk option of offering web programming as alective
course targeted at non-majors who have just coegl€S1. In
the common parlance this would be considered al'GScourse.
Basic programming skills (loops, selection, vargahl arrays,
functions) are required, but no web programmingeence is
expected. This prerequisite proved very importadrgcause
assuming a modicum of programming knowledge allowsdo
cover topics at a more brisk pace, with less famudasic syntax
and concepts like parameters and variables, amddinte more
elaborate and interesting programming assignments.

Figure 1 summarizes declared majors of studentsledrin
the web course in Spring 2008. Students listetPas-Major"
have declared a desire to entire CSE or anotheénesgng major
but have not yet applied for admission to the paogr

Other
19%

Math

Z%K
T

Electrical Undeclared

Engineering / Major

5% 54%

Physics
2%

Applied
Math/Sciences
0
6% —
Computer ‘\\
Engineering ~
4% Computer
Science
10%

Figure 1. Student Majorsin Web Course

Despite limited advertising and the course not togn
toward our major, 92 students took it in 2007 a@@ in Spring
2008. 8% of the students were CS majors, and 92¥ won-
majors. 81% of the students were men and 19% weneen.

Table 2. Web Course Topics and Assignments

Topic Assignment

basic web pages with HTML/CSS Granny's Pies Page

web page layout with CSS IMDb Movie Review

JavaScript event-driven programming ASClimation

JS Document Object Model (DOM) Fifteen Puzzle

Asynchronous JavaScript/XML (Ajax)| Baby Name Surfer

PHP server-side programming To-Do List

HTML forms and server-side data NerdLuv dating site

databases and SQL Kevin Bacon problem

The major topics covered
corresponding homework assignments are shown irleTab
Other topics covered in lecture include web segubiasics,
multimedia web content, web design and usabilityp@e's Ajax
web APIs, taking a web site "live" and managing ebveerver.
We chose to cover a breadth of topics, achievinghdérough
repetition. For example, though only the first fassignments

in the course and their

were focused on HTML and CSS, later assignmentsralguired
and evaluated the student's knowledge of thosetéapies.

In our planning we decided on several major godlshe
course. Unlike most other courses, we chose tchtemly
standards-compliant constructs and code, usingregntifree
software on the client and server. We focused lmn most
modern versions of tools and languages, ignoringpadibility
with legacy software such as Internet Explorer &mfsl HTML
4.01. We also worked constantly to keep the céuzace and
difficulty at a level palatable for non-majors whwave just
finished CS1, reminding ourselves that most ofdbee audience
in the class was not bound to become part of ogregeprogram.

Another difficult decision was the choice of a ssrside
programming language. While the set of client-g&tghnologies
is fairly standardized (HTML, CSS, JavaScript, jetserver-side
languages vary widely between courses and textbookge
decided to focus on PHP as our single server-gidguage. PHP
is a flawed language, but it is simple to set wghtfor the server
administrator (who merely needs to install PHP otite web
server) and for the students (who can immediatglpad .php
files that will run). JSP, Ruby, .NET, and othanguages are
comparatively much more difficult to deploy and usewrite
small, simple introductory programs. PHP also graées very
well with Apache web server software, is completéige of
charge and free to distribute, is open-sourcehésmost widely
used and popular web language, and looks muchHKEL, C,
and other languages with which the students ardifam

We chose to leave out a few important topics likebw
services and Flash, despite student interest settechnologies.
We felt that there were enough languages and widady in the
course, and that these topics are more appropdata second
course in web application development. It is efsya new
student to be overwhelmed by the amount of newasyrPIs,
languages, and tools that are used in a course aithis one.
This is consistent with student feedback from auvsys.

The course had three 50-minute lectures per weaekoae
50-minute lab session in which students would sphablems by
computer with TAs available to answer questiontudénts were
not required to finish any particular number of lgeons, so long
as they worked for the entire 50-minute periodudgnt feedback
suggests that the lab sessions were very helpéuticipation in
the first 7 of 10 lab sessions was mandatory, @& dut of 192
students (77%) still chose to attend the finaldabsion despite it
not counting for course credit. Lab sessions ptewided fertile
ground for the instructor and TAs to discover fegliin our own
teaching by observing students' questions andgigsdirsthand.

We believe that labs are particularly useful foistbourse.
When programming with web languages the concepm smasy
to students, but details and bugs can be haraehdp fhany student
bugs don't show any output and are difficult toweb Having a
lab TA to help find and fix these bugs was a cruoémnefit.

Perhaps the greatest resource we have utilizeldisrcourse
is our teaching assistants. We follow the modeppsed by
Reges [6] and also documented by Roberts [7] anck@e[1],
using undergraduates to staff our labs and prooffiee hours to
answer students' homework questions. The TAsraaduable in
helping students fix software issues, teaching thenproperly

debug the confusing new errors they encounter when
programming for the web, and closing gaps in th&rirctor's
explanation of the material. Good TA support igcial when
expecting non-CS majors to solve tricky web proldem

The recommended software for the course was a pain
editor such as TextPad or TextMate (Mac), alondp wie Firefox
browser. Other tools such as the extremely vatudhbiebug
debugging plugin and the JsLint JavaScript syntzecker were
also introduced. Students uploaded their code toetral
dedicated LAMP server for the course, with eackestt having a
private directory for storing and testing his/hesgrams.

3.1 CHALLENGESAND DISCOVERIES

Web programming offers many unique challenges and
difficulties that we discovered while teaching thturse.
Probably the most prominent difficulty is the sdétnew nasty
bugs that arise in web programming. Many of thesine@mmon
student mistakes, such as misspelling a tag in HTidigetting a
token in JavaScript, or capitalizing a variablessne incorrectly,
produce no output in the browser. The studenefis with no
indicator that something is wrong and no clear wafind or fix
the problem. There are few tools for debuggingl arany of the
tools that do exist are not made for new prograreméYe expose
students to Firebug plugin early in the coursedebugging. It
not only provides verbose error feedback but alfeo ability to
dynamically change a page on the fly and see thdtse as well
as a full-featured JavaScript debugger and intezpreFirebug is
an excellent tool and we use it extensively in caurse. We also
use the W3C XHTML and CSS validators for findingstakes in
syntax in those languages, as well as the JsLuaSkaipt syntax
checker, which points out many common JavaScrigsbthat
would otherwise produce no error or warning.

Perhaps the most frustrating tool is the browsselfit
incompatibility issues between browsers (largegw8 found in
Microsoft Internet Explorer) make robust web prognasing
unnecessarily difficult. We constrain our studeots-irefox and
instruct them to code to published web standagigring quirks
that may exist in Internet Explorer or other bromgseWe provide
links to IE-only bugs and fixes for interested snts.

There is a lack of good resources from which torrea
introductory web programming, particularly at th@S' 1.5” level.
There are many web tutorials, but the vast majanigysloppy, out
of date, or plain wrong. Sebesta [8] and Jacksjrwfere the
most helpful textbooks we found, but neither wagoad fit for
our course as both target a more advanced, 300-leeb
programming course. We chose not to require abo@k in
Spring 2008 and instead relied on instructor-predidnaterials.
We have written a large number of lecture noterials, and
chapters for students to read about each weeké&rialags well as
providing links to our favorite external resoureesl references.

Some of the challenges we faced were unique tdiregthis
subject and not to web programming itself. Fornepde, the
student must learn many programming languages and
technologies in a short time, each introducing sgmtax and new
programming paradigms such as event-driven progiagim
client-server interaction, and so on. This is ipatarly tough at
universities like ours that are on the quarteresyst We provide
"cheat sheets" and allow open-book exams to easeain of
learning so many new languages and so much syatguiskly.

There is a proliferation of sloppy web code examma the
various popular online tutorials, showing poor etylno
comments, and otherwise poor solutions. To cortfiede poor
examples, we rigidly enforce a two-part gradingtesyscovering
"external correctness" (the program's behavior,putt and
appearance) and "internal correctness" (the cadg's, design,
documentation, elegance,
standards), giving roughly equal grading weight¢aach.

A final and more subtle difficulty in a web progranimg
course is stopping students from copying each sthark, even
when said work is being placed onto the public w&b.minimize
code theft, we allow students to post their workyda password-
protected web folders under the supervision otthese staff.

4. ASSESSMENT

During each course offering we gathered data frordesnts.
A voluntary, anonymous survey was given to eacklesitiupon
submission of each assignment to assess what dsnoepe
challenging. Mid-quarter and end-of-quarter evatues were
given to gauge satisfaction with the course andaah.

We acknowledge that self-reported data has inhdtans.
That said, the original purpose of the surveys wagjather
feedback from the students to evaluate and imptbgecourse.
We share this data to begin to provide evidencé shah an
experimental course is worth developing. As therse matures,
we hope to refine the surveys and correlate data fdifferent
terms to increase the reliability of the claims maere.

From our homework surveys, we found advanced Jai#Sc
DOM programming and building rich Ajax Web 2.0 dpations
were among the most difficult concepts. This hassed us to
rethink our order of topics; we plan to move baBldP server-
side programming and HTML forms earlier in the cmumand
delay event-driven DOM programming by two weekse bi¢lieve
this will result in a more gradual difficulty curve

45

B Difficulty

B Enjoyment

JSDOM

2 E]
g ¢
s 3
2
=

JavaScript

" Ajax/XML
Web 2.0
PHP/SQL

PHP/Forms

—
=}

B
)

Figure 2. Homework Difficulty and Enjoyment Survey Data

Students were also asked what specific aspectsaci e
assignment were most interesting and most frusgratiA large
fraction of the students appreciated opportunitie®e creative.
We incorporated this into each assignment, lettimg student
choose background colors and images, customize txd
provide their own custom links and content as mastpossible

and conformance to W3C web

within the guidelines of the material we wantedgach. We saw
the largest impact of this on our sixth assignmantyeb 2.0 To-
Do list focusing on Ajax and JavaScript effectsudgnts reported
the most hours spent on this assignment but al® ainthe

highest enjoyment ratings. Several students athdomments
saying that they enjoyed customizing its look artdvior.

n o N o ©

M Hours Spent

Hours
B

ok N W

HTML/CSS
Layout
JavaScript
JSDOM
jax/XML
Web 2.0
PHP/Forms
PHP/SQL

Figure 3. Homework Hours Spent Survey Data

We were encouraged to find that web programmingematk
easy to incorporate student creativity into assigms The
languages involved make it simple to add pizzazzatpage
without greatly increasing the difficulty or makinlge programs
hard to grade. Students reported that they weritegixthat with
only a few weeks of learning they could alreadyateeneb sites
that were near "professional quality.” It is diffit to reach such a
level in most early courses; this makes web progrmm a
powerful vehicle for motivating interest in compuseience.

The end-of-quarter course evaluation data shows tthe
course was very popular. High course ratings alare not
always compelling, but we note two particular numsbeFirst is
the course's Challenge and Engagement Index (@BKing of 6,
indicating that the course was of above-averagdiculify
compared to other university/CS courses. The sbithe low
difference between average outside-of-class hquestper week
(9.0) and the number of those hours students petes being
valuable to their education (8.6). These factomgly that though
the students found the course challenging, thepyedj it and
considered almost all work in the course to bevesleand useful.

Table 3. Student Evaluation Data
(5-point scale unless other wise specified)

Category 2007 2008
Course as a whole 4.7 5.0
Course content 4.5 5.0
Relevance and usefulness of content 4.7 49
Amount learned 4.7 4.9
Challenge/engagement (10-pt scale) 7 6
Hours spent on coursework per week 9.4 9.0
Valuable hours spent 7.5 8.6

5. ANALYSISAND CONCLUSIONS

We feel that the data supports the claim that tberse
offering was a success. As mentioned previoustidets were
pleased with the course despite its high difficldtyel and "work

in progress" nature. Another relevant fact is tha course
currently counts for no credit toward any degreegpam; it
counts only as general elective credit, essentialythless to
students for degree progress. That over 200 stsid@tuntarily
enrolled in such a course for no academic rewasdlspto the
strong student desire to see this material incatedrinto the CS
curriculum. Anecdotally, many students expresseddness that
the course was ending and wished there were anfalfp course
covering more advanced web concepts and largeeqsj UW is
in the progress of undergrad curriculum revisiord e consider
such a second web course to be an area for futpteration.

A piece of feedback we received repeatedly wasnaesef
excitement about the course material. Simply guidents really
want to learn this stuff. Web programming delivexsrich
multimedia experience that brings rewarding resultse material
is relevant to students, who share their work iignds, post it
on Facebook and MySpace, and add it to their wigds.siWeb
programming is interdisciplinary: Based on our dasad
feedback, its topics are more relevant to many @8nmmajors than
CS2's. Despite its reputation in some circles, prelgramming is
conceptually deep; it gives a simple way to leavengdriven
programming, to become conversant in many languagas the
client-server paradigm, interact with databased,mare.

Having CS1 as a prerequisite freed us to coverlaaguage
syntax more quickly and therefore to solve moreerigdting
problems. But it raises the question: Why not maveb
programming even later in the curriculum and writeore
elaborate programs? We have two counter-argume@tse is
that non-majors formed the core of our large autbemand they
would be unable to take the course if it had addél
prerequisites. The other is that from our gradalysis, CS
majors did well despite being asked to completeenifficult
assignments. This suggests to us that the matsrialthe right
place and would be too easy for junior-level stuslen

Another unexpected side effect of offering the veslurse
just after CS1 is an increase in interest in C3Ris fall we see a
40-student (18%) increase in first-day CS2 enratitherhich we
partially attribute to the web course's popularityWithout
substantive data, our best hypothesis is that tiseadarge subset
of students who enjoy our CS1 course but are idtieid away
from taking our CS2 after hearing about its highgrde of
difficulty. We believe (and have heard anecdojalhat taking
the web programming course gives these studenthe@mnt@rm to
sharpen their programming skills and gain overadlturity as
software developers before undertaking the chadleafy CS2.
This emboldens students who would otherwise avieéd dourse
entirely, helping to bring additional students iotar major. (This
is a nice benefit of offering well-run service cses in general.)

6. FUTURE WORK

UW's web programming course will be offered in &gri
2009, again as an elective that fulfills no CS magmuirements.
We believe this provides some unintended benefitgallows the
course to fly in under the radar and not be suliectesign and
destruction by committee. It leads to a degresetifselection,
where the majority of the students in the course trere
voluntarily because they want to learn the materiaThis
promotes a positive and energetic classroom atnessphAlso,

the material and course are so exciting to studénasthey are
willing to take it without receiving any additionadward.

We are currently collaborating with other departteesuch
as our Informatics School to potentially allow tbeurse to be
cross-listed and to fulfil degree requirements ftmose
departments. Cross-department interest exista émurse such as
this one and helps the survival and longevity ef¢burse.

We plan to add a weekly 50-minute TA-led discussion
section to the course to match our CS1 and CSXesurWe find
that sections are immensely valuable for reinfaydime material
taught in lecture. The discussions also increas® feelings of
ownership and investment in the course, which wasi@or
problem for us in past offerings. We are also tpiag course
resources such as comprehensive lecture noteseXatrises,
discussion section handouts, video screencastsrdéctures, and
a textbook. These resources will be availabletheminstructors.
We hope to help encourage the mass adoption efdattory web
programming into CS programs at this level. Ourent course
materials can be found at the following address:

e http://www.cs.washington.edu/190m/

7. ACKNOWLEDGMENTS
Our thanks to the SIGCSE 2007 web programming BoF
attendees for their valuable insights and expeegnc

8. REFERENCES

[1] Decker, A., Ventura, P., Egert, C. Through theking
glass: reflections on using undergraduate teacissgstants
in CS1. SIGCSE Bulletin, 38(1): 46-50, 2006.

[2] Gousie, M. A robust web programming and graphasse
for non-majors. SIGCSE Bulletin, 38(1): 72-76, 800

[3] Jackson, JWeb Technologies: A Computer Science
Perspective.Prentice Hall, 2006.

[4] Noonan, R. A course in web programming. Jourfal o
Computing Sciences in Colleges, 22(3): 23-28, 2007.

[5] Reed, D. Rethinking CSO0 with JavaScript. SIGCSE
Bulletin, 33(1): 100-104, 2001.

[6] Reges, S. Using undergraduates as teaching assiata
state university. SIGCSE Bulletin, 35(1): 103-12303.

[7] Roberts, E., Lilly, J., Rollins, B. Using underduates as
teaching assistants in introductory programming ®est an
update on the Stanford experience. SIGCSE Bull2#(l):
48-52, 1995.

[8] Sebesta, RProgramming the World Wide Web (4th
Edition). Addison Wesley, 2007.

[9] Stepp, M., Miller, J. Web programming in the couatum.
SIGCSE Bulletin, 40(1): 564, 2008.

[10] Yue, K., Ding, W. Design and evolution of an
undergraduate course on web application development
SIGCSE Bulletin, 36(3): 22-26, 2004.

[11] Zimmermann, B. Content and laboratories of a cdingu
science course for non-majors in the 21st centdournal of
Computing Sciences in Colleges, 19(5): 68—77, 2004.

